Stadtulm
Stadtklimaanalyse Ulm 2018

Stadt Ulm
Hauptabteilung Stadtplanung, Umwelt und Baurecht
Abteilung Strategische Planung

Erstellt von:
GEO-NET Umweltconsulting GmbH, Hannover

Veröffentlichung:
Oktober 2018
Inhaltsverzeichnis

Glossar 7

1 **Einleitung** 1

2 **Fachliche Grundlagen** 4

 2.1 Der Stadtklimaeffekt 4

 2.2 Meteorologische und geographische Bedingungen im Untersuchungsraum 5

 2.2.1 Geographische Lage des Untersuchungsgebiets 5

 2.2.2 Klimatische Bedingungen 6

2.3 Bisherige Klimauntersuchungen 9

2.4 Exkurs: Planungsrechtliche Grundlagen 10

3 **Methode der modellgestützten Stadtklimaanalyse** 12

3.1 Das Stadtklimamodell FITNAH 3D 12

3.2 Betrachtete Wetterlage 14

3.3 Eingangsdaten 14

4 **Modellergebnisse ausgewählter Parameter** 17

4.1 Vorgehensweise 17

4.2 Nächtlches Temperaturfeld 17

4.3 Kaltluftströmungsfeld 19

4.4 Kaltluftvolumenstrom 22

4.5 Thermische Belastung am Tage 24

5 **Klimaanalysekarte** 27

5.1 Vorgehensweise 27

5.2 Ergebnisse 27

6 **Planungshinweiskarten** 31

6.1 Vorgehensweise 31

 6.1.2 Bewertung der Siedlungs- und Gewerbeflächen (Wirkungsraum) 32

 6.1.3 Bewertung der Grün- und Freiflächen (Ausgleichsraum) 33

6.2 Ergebnisse 36

7 **Betroffenheitsanalyse** 43

8 **Maßnahmenkatalog Klimaanpassung** 46

9 **Zusammenfassung und Ausblick** 52

Quellenverzeichnis 54

Anhang 56
Tabellenverzeichnis

TABELLE 1: ZUORDNUNG VON SCHWELLENWERTEN FÜR DEN BEWERTUNGSINDEX PET WÄHREND DER TAGESSTUNDEN (NACH VDI 2004)... 25
TABELLE 2: FLÄCHENANTEILE DER NÄCHTLICHEN ÜBERWÄRMUNG IM SIEDLUNGS- UND GEWERBERAUM ... 28
TABELLE 3: EINORDNUNG DER BIOKLIMATISCHEN BELASTUNG IM WIRKUNGSRAUM IN DER NACHT (LUFTTEMPERATUR T_a) SOWIE AM TAGE (PET) UND FLÄCHENMITTELWERT SOWIE STANDARDABWEICHUNG (SD) DER METEOROLOGISCHEN PARAMETER FÜR DIE KORRESPONDIERENDEN FLÄCHEN IM STADTGEBIET ULMS .. 32
TABELLE 4: EINORDNUNG DES KALCLUFTVOLUMENSTROMS (Z-TRANSFORMATION) ... 34
TABELLE 5: EINORDNUNG DER PET FÜR DIE BEWERTUNG DER GRÜNFLÄCHEN AM TAG ... 35
TABELLE 6: FLÄCHENANTEILE BIOKLIMATISCH BELASTETER SIEDLUNGSGEBIETE IN DER NACHT UND ABGELEITETE PLANUNGSHINWEISE 37
TABELLE 7: FLÄCHENANTEILE BIOKLIMATISCH BEDEUTENDER GRÜNAREALE IN DER NACHT UND ABGELEITETE PLANUNGSHINWEISE 38
TABELLE 8: FLÄCHENANTEILE BIOKLIMATISCH BELASTETER SIEDLUNGSGEBIETE AM TAGE UND ABGELEITETE PLANUNGSHINWEISE 39
TABELLE 9: FLÄCHENANTEILE BIOKLIMATISCH BEDEUTENDER GRÜNAREALE AM TAGE UND ABGELEITETE PLANUNGSHINWEISE 40
TABELLE 10: BEISPIELE FÜR MAßNAHMEN ZUR KLIAMANPASSUNG .. 46
Glossar

Albedo: Rückstrahlvermögen einer Oberfläche (Reflexionsgrad kurzwelliger Strahlung). Verhältnis der reflektierten zur einfallenden Lichtmenge. Die Albedo ist abhängig von der Beschaffenheit der bestrahlten Fläche sowie vom Spektralbereich der eintreffenden Strahlung.

Allochthone Wetterlage: Durch großräumige Luftströmungen bestimmte Wetterlage, die die Ausbildung kleinräumiger Windsysteme und nächtlicher Bodeninversionen verhindert. Dabei werden Luftmassen, die ihre Prägung in anderen Räumen erfahren haben, herantransportiert.

Ausgleichsraum: Grüngeprägte, relativ unbelastete Freifläche, die an einen → Wirkungsraum angrenzt oder mit diesem über → Kaltluftleitbahnen bzw. Strukturen mit geringer Rauigkeit verbunden ist. Durch die Bildung kühlerer und frischerer Luft sowie über funktionsfähige Austauschbeziehungen trägt dieser zur Verminderung oder zum Abbau der Belastungen im Wirkungsraum bei. Mit seinen günstigen klimatischen Eigenschaften bietet er eine besondere Aufenthaltsqualität für Menschen.

Austauscharme Wetterlage: → Autochthone Wetterlage

Autochthone Wetterlage: Durch lokale und regionale Einflüsse bestimmte Wetterlage mit schwacher Windströmung und ungehinderten Ein- und Ausstrahlungsbedingungen, die durch ausgeprägte Tagesgänge der Lufttemperatur, der Luftfeuchte und der Strahlung gekennzeichnet ist. Die meteorologische Situation in Bodennähe wird vornehmlich durch den Wärme- und Strahlungshaushalt und nur in geringem Maße durch die Luftmasse geprägt, sodass sich lokale Klimate wie das Stadtklima bzw. lokale Windsysteme wie z.B. Berg- und Talwinde am stärksten ausprägen können.

Autochthones Windfeld: Strömungen, deren Antrieb im Betrachtungsgebiet selber liegt und die nicht durch großräumige Luftdruckgegensätze beeinflusst werden, z.B. → Kaltluftabflüsse und → Flurwinde, die sich als eigenbürtige, landschaftsgesteuerte Luftaustauschprozesse während einer windschwachen sommerlichen → autochthonen Wetterlage ausbilden.

Bioklima: Beschreibt die direkten und indirekten Einflüsse von Wetter, Witterung und Klima (= atmosphärische Umgebungsbedingungen) auf die lebenden Organismen in den verschiedenen Landschaftsteilen, insbesondere auf den Menschen (Humanbioklima).

Flurwind: Thermisch bedingte, relativ schwache Ausgleichsströmung, die durch horizontale Temperatur- und Druckunterschiede zwischen vegetationsgeprägten Freiflächen im Umland und (dicht) bebauten Gebieten entsteht. Flurwinde strömen vor allem in den Abend- und Nachtstunden schubweise in Richtung der Überwärmungsbereiche (meist Innenstadt oder Stadtteilzentrum).

Grünfläche: Als „Grünfläche“ werden in dieser Arbeit unabhängig von ihrer jeweiligen Nutzung diejenigen Flächen bezeichnet, die sich durch einen geringen Versiegelungsgrad von maximal ca. 25 % auszeichnen. Neben Parkanlagen, Kleingärten, Friedhöfen und Sportanlagen umfasst dieser Begriff damit auch landwirtschaftliche Nutzflächen sowie Forsten und Wälder.

Kaltluft: Luftmassen, die im Vergleich zu ihrer Umgebung bzw. zur Obergrenze der entsprechenden Bodeninversion eine geringere Temperatur aufweisen und sich als Ergebnis des nächtlichen Abkühlungsprozesses der bodennahen Atmosphäre ergibt. Der ausstrahlungsbedingte Abkühlungsprozess der bodennahen Luft ist umso stärker, je geringer die Wärmekapazität des Untergrundes ist, und über Wiesen, Acker- und Brachflächen am höchsten. Konkrete Festlegungen über die Mindesttemperaturdifferenz zwischen Kaltluft und Umgebung oder etwa die Mindestgröße des Kaltluftvolumens, die das Phänomen quantitativ charakterisieren, gibt es bisher nicht (VDI 2003).

Kaltluftabfluss: Flächenhaft über unbebauten Hangbereichen auftretende Kaltluftabflüsse. Aufgrund der vergleichsweise höheren Dichte von Kaltluft setzt diese sich, dem Gefälle folgend, hangabwärts in Bewegung. Der Abfluss erfolgt schubweise. Er setzt bereits vor Sonnenuntergang ein und kann die ganze Nacht andauern.
Kaltluft einwirkbereich: Wirkungsbereich der lokal entstehenden Strömungssysteme innerhalb der Bebauung (Siedlungs- und Gewerbeflächen innerhalb des Stadtgebiets gekennzeichnet, die von einem überdurchschnittlich hohen → Kaltluftvolumenstrom > 105 m³ s⁻¹ durchflossen werden; Mittelwert des Kaltluftvolumenstroms über alle Flächen im Stadtgebiet).

Kaltluftentstehungsgebiete: Grünflächen mit einem überdurchschnittlichen → Kaltluftvolumenstrom, die → Kaltluftleitbahnen speisen (→ Flurwinde zeigen in Richtung der Kaltluftleitbahnen) bzw. über diese hinaus bis in das Siedlungsgebiet reichen..

Kaltluftvolumenstrom: Vereinfacht ausgedrückt das Produkt der Fließgeschwindigkeit der → Kaltluft, ihrer vertikalen Ausdehnung (Schichthöhe) und der horizontalen Ausdehnung des durchflossenen Querschnitts (Durchflussbreite). Der Kaltluftvolumenstrom beschreibt somit diejenige Menge an → Kaltluft in der Einheit m³, die in jeder Sekunde durch den Querschnitt eines Hanges oder einer → Kaltluftleitbahn fließt. Anders als das → Strömungsfeld berücksichtigen der Kaltluftvolumenstrom somit auch Fließbewegungen oberhalb der bodennahen Schicht.

Kelvin (K): SI-Basiseinheit der thermodynamischen Temperatur, die zur Angabe von Temperaturdifferenzen verwendet wird. Der Wert kann in der Praxis als Abweichung in Grad Celsius (°C) interpretiert werden.

Klimaanalysekarte: Analytische Darstellung der Klimaauswirkungen und Effekte in der Nacht sowie am Tage im Stadtgebiet und dem näheren Umland (Kaltluftprozessgeschehen, Überwärmung der Siedlungsgebiete).

PET (Physiologisch äquivalente Temperatur): Humanbioklimatischer Index zur Kennzeichnung der Wärmebelastung des Menschen, der Aussagen zur Lufttemperatur, Luftfeuchte, Windgeschwindigkeit sowie kurz- und langwelligen Strahlungsflüssen kombiniert und aus einem Wärmehaushaltsmodell abgeleitet wird.

Planungshinweis karte: Bewertung der bioklimatischen Belastung in Siedlungs- und Gewerbeflächen im Stadtgebiet (→ Wirkungsräume) sowie der Bedeutung von Grünflächen als → Ausgleichsräume für die Tag- und die Nachtsituation und Ableitung von allgemeinen Planungshinweisen.

Strahlungswetterlage → Autochthone Wetterlage

Strömungsfeld: Für den Analysezeitpunkt 04:00 Uhr morgens simulierte flächendeckende Angabe zur Geschwindigkeit und Richtung der → Flurwinde in 2 m über Grund während einer → autochthonen Wetterlage.

Strukturwind: Kleinräumiges Strömungsphänomen, das sich zwischen strukturellen Elementen einer Stadt ausbildet (bspw. zwischen einer innerstädtischen → Grünfläche und der Bebauung entlang einer angrenzenden Straße).

Wirkungsräume: Bebauter oder zur Bebauung vorgesehener Raum (Siedlungs- und Gewerbeflächen), in dem eine bioklimatische Belastung auftreten kann.

1 Einleitung

ZIELE UND ANALYSEANSATZ

Als Grundlage für die Analyse und Bewertung der siedlungsklimatischen Zusammenhänge dienen die modellierten meteorologischen Parameter der Klimaanalyse. Methodischer Ausgangspunkt für die Analyse der klimaökologischen Funktionen ist die Gliederung der Stadtfläche in drei Raumkategorien:

• größtenteils bioklimatisch belastete Siedlungsräume (Wirkräume)
• Kaltluft produzierende, unbebaute und vegetationsgeprägte Flächen (Ausgleichsräume)
• Luftaustauschprozesse, welche allein thermisch („Flurwindsystem“) oder thermisch-orographisch angetrieben (Kaltluftabfluss, „Berg-Talwindsystem“) sein können und teils erhebliche Entfernungen überbrückend Wirk- und Ausgleichsräumen miteinander verbinden (Kaltluftleitbahnen).

EINORDNUNG DER ULMER STADTKLIMAS

Das Temperaturniveau der Stadt fällt im Vergleich zu anderen Städten Baden-Württembergs (z.B. Freiburg mit 11,1 °C Jahresdurchschnittstemperatur) relativ niedrig aus. Die Ulmer Jahresmitteltemperatur von ca. 9 °C entspricht in etwa der Jahresmitteltemperatur von Hamburg (vgl. Kapitel 2.2.2). Da das Klima in Ulm kontinental und in Hamburg vorwiegend maritim geprägt ist, sind jedoch die Winter in Ulm insgesamt kühler und die Sommermonate wärmer als in Hamburg. Das Temperaturniveau Ulms wird außerdem durch seine Höhe über dem Meeresspiegel (zwischen 459 m bis 646 m, vgl. Kapitel 2.2.1) herabgesetzt.

Für das Verständnis des Wärmeinseleffektes muss aufgrund der unmittelbaren Angrenzung Neu-Ulms der gesamte polyzentrische Ballungsraum Ulm/Neu-Ulm betrachtet werden. Im Ballungsraum Ulm/Neu-Ulm wohnen aktuell fast 200 000 Menschen (Statistisches Landesamt Baden-Württemberg 2018). Vergleichbar große Städte sind Solingen (Wärmeinselintensität von 8 K), Osnabrück (Wärmeinselintensität von knapp

Das derzeit bestehende, angenehme Klima der Stadt Ulm sollte im Zuge des Klimawandels und der geplanten Bautätigkeiten möglichst erhalten bleiben. Insofern ist es wichtig, die Ausprägung des Stadtklimas zu untersuchen und potenzielle Missstände frühzeitig zu erkennen, um die richtigen Maßnahmen zum Erhalt (z.B. durch das Freihalten von Kaltluftleitbahnen) bzw. sogar Verbesserung des Klimas (z.B. Pflanzung von Straßenbäumen) treffen zu können.
2 Fachliche Grundlagen

2.1 DER STADTKLIMAEFFEKT

Solch belastenden Situationen entstehen vornehmlich bei Hochdruckwetterlagen und sind durch einen ausgeprägten Tagesgang der Strahlung, Temperatur, Luftfeuchtigkeit, Wind und Bewölkung bestimmt (autochthone Wetterlagen). Durch lokal unterschiedliche Abkühlungsraten entstehen Temperatur- und damit Dichteunterschiede, die Ausgleichsströmungen hervorrufen (Flurwinde; Abb. 2).

Abb. 2: Prinzipskizze Flurwind

Verkehr, Industrie und Hausbrand bewirken nicht nur einen anthropogenen Wärmefluss, sondern führen auch zu vermehrten Emissionen. Entsprechend weist die Luft in der Stadt erhöhte Verunreinigungen durch Schadstoffe und Staub auf, die sich negativ auf die Gesundheit des Menschen auswirken können. Da die Windgeschwindigkeiten in der Stadt in der Regel herabgesetzt sind, kann kein ausreichender Luftaustausch stattfinden, um die Luftqualität merklich zu verbessern (Kuttler 2009).

Dies erklärt die Notwendigkeit der Betrachtung des Stadtklimas, insb. da ein Großteil der Bevölkerung in Städten wohnt und demzufolge Belastungen so gering wie möglich gehalten werden sollten, um gesunde Wohn- und Arbeitsverhältnisse sicherzustellen.

2.2 METEOROLOGISCHE UND GEOGRAPHISCHE BEDINGUNGEN IM UNTERSUCHUNGSRAUM

2.2.1 GEOGRAPHISCHE LAGE DES UNTERSUCHUNGSGEBIETS

Ulm befindet sich am südöstlichen Rand der Schwäbischen Alb und wird im Osten von der Donau und dem Freistaat Bayern begrenzt. Die etwa 118,7 km\(^2\) große Stadt ist in 18 Stadtteile gegliedert und hat 125.596 Einwohner (Stand 31.12.2017; Statistisches Landesamt Baden-Württemberg 2018). Ulm ist die größte Stadt in der Region Donau-Iller und im Regierungsbezirk Tübingen. Die Stadt liegt auf einer Höhe von etwa 479 m ü. NN (Höhenlage des Rathauses). Das Gebiet ist durch größere Reliefferschiede geprägt, die von 459 m (Donauufer) bis 646 m ü. NN (Klingensteiner Wald) reichen. Für die Klimaanalyse der Stadt Ulm wurde nicht nur das Stadtgebiet selbst, sondern auch das nähere Umland betrachtet. Insgesamt hat das Untersuchungsgebiet eine Größe von etwa 465 km\(^2\) bei einer Ausdehnung von ca. 23 x 20 km (Abb. 3). Das Modellgebiet schließt auch die gesamte Fläche (81,1 km\(^2\)) der Stadt Neu-Ulm mit ein. Die Reliefferschiede im Untersuchungsgebiet reichen von 450 m (Elchingen an der Donau) bis 676,6 m (Schwäbische Alb). Die meisten Siedlungsbereiche liegen in den niedrigeren Lagen, insbesondere in den Tälern der Donau, der Blau und der Iller.

\(^1\) Rückstrahlvermögen einer Oberfläche
2.2.2 KLIMATISCHE BEDINGUNGEN

Die Lufttemperatur geht tendenziell mit zunehmender geographischer Breite sowie Höhe über dem Meeresspiegel zurück. In Ulm liegt die Jahresmitteltemperatur bei knapp über 9 °C (Abb. 5) und damit innerhalb Deutschlands in einem niedrigen Bereich, welcher vergleichbar mit Hamburg ist. Andere Städte wie Frankfurt a.M. (10,1 °C) sowie Freiburg (11,1 °C) weisen dagegen deutlich höhere Werte auf (ohne Abb.; Steinicke & Streißeneder 2012). Auch allgemein im Vergleich zu anderen Städten Baden-Württembergs ist das Klima in Ulm relativ kalt. Mit Blick auf die Entwicklung der Jahresmitteltemperatur

Abb. 4: Klimadiagramm Ulm basierend auf den Werten der LUBW-Station 1995-2017

Die Ulmer LUBW-Station weist im langjährigen Mittel Hauptanströmungsrichtungen aus Westsüdwest bis West auf (Abb. 6). Ein deutlich geringeres sekundäres Maximum verzeichnen westnordwestliche, südsüdwestliche und ostnordöstliche Windrichtungen (Auftreten jeweils ca. 10 % im Messzeitraum), während Strömungen aus dem nördlichen und südlichen Sektor vergleichsweise selten vorkommen. Bedingt durch die Hinderniswirkung insbesondere von Gebäuden, herrschen im Stadtgebiet modifizierte Strömungsverhältnisse vor.

Das vorliegende Gutachten untersucht die Strömungsverhältnisse einer autochthonen Sommernacht. Diese ist mit der stark stabilen Schichtung zu vergleichen, doch wird kein übergeordneter Wind berücksichtigt, d.h. das Strömungsfeld durch die lokalen Gegebenheiten hervorgerufen (Flurwinde, Kaltluftabflüsse). Stadtplanerische Maßnahmen vermögen am ehesten das Prozessgeschehen während autochthoner Wetterlagen zu beeinflussen, sodass deren Kaltluftaushalt Grundlage für die Ausweisung von Kaltluftleitbahnen ist. Übergeordnete Strömungen verhindern die Ausbildung eines autochthonen Klimas, wirken aber ebenfalls auf das Stadtklima und können in Bezug auf die Luftreinhaltung eine wichtige Rolle bei der Durchlüftung einer Stadt spielen. Planerisch lassen sich diese weniger beeinflussen, doch sollte dafür gesorgt werden, dass Belüftungsachsen aus den Hauptanströmungsrichtungen – in Ulm insbesondere aus Westsüdwest bis West – in das Stadtgebiet bestehen bleiben.
Abb. 5: Jahresmitteltemperatur für den Zeitraum 1995 - 2017 in Ulm-Weststadt (LUBW 2018)

Da vor dem Hintergrund der Hitzebelastung in Städten insbesondere die Sommersituation von Relevanz ist, wurde in der Abb. 7 die Windsituation in den Monaten Juni, Juli und August untersucht. Extreme Schwachwindlagen (< 0,5 m s\(^{-1}\)) kommen während der Sommermonate in Ulm-Weststadt an ca. 14,7 % der Jahresstunden vor. Davon treten 4,6 % der sommerlichen Schwachwindlagen in Form von Kalmen (Windgeschwindigkeit ≤ 0,3 m s\(^{-1}\); nach DWD 2017b) auf. Windgeschwindigkeiten zwischen 0,5 m s\(^{-1}\) und 1 m s\(^{-1}\) sind in etwa 35 % der Jahresstunden vorherrschend, wogegen Starkwindereignisse mit über 4 m s\(^{-1}\) eher selten sind. Allgemein sind die Winde im Winter stärker und im Sommer schwächer ausgeprägt.

Abb. 7: Häufigkeiten von Windgeschwindigkeiten in den Sommermonaten Juni, Juli und August für den Zeitraum 1995 bis 2017 an der Messstation in Ulm (LUBW 2018)

2.3 BISHERIGE KLIMAUNTERSUCHUNGEN

Abb. 8: Ausschnitt aus der Analysekarte der Regionalen Klimaanalyse Donau – Iller (Regionalverband Donau – Iller, 2015)

2.4 EXKURS: PLANUNGSRECHTLICHE GRUNDLAGEN

In Flächennutzungsplänen (FNP; vorbereitende Bauleitplanung) können z.B. Anlagen, Einrichtungen und sonstige Maßnahmen, die der Anpassung an den Klimawandel dienen, dargestellt werden (§ 5 (2) S. 2c BauGB). So bietet sich durch den FNP bspw. die Möglichkeit der Sicherung von Freiflächen, die der Kaltluftproduktion dienen, sowie von Frischluftbahnen und Ventilationsbahnen (Belüftungssachen; vgl. Stadt Karlsruhe 2014). In FNP wird vor allem das mesoskalige Klima betrachtet (räumliche Auflösung der Karten ca. 25 m bis 100 m), während in Bebauungsplänen (B-Plan; verbindlichen Bauleitplanung) das Mikroklima in den Vordergrund rückt (ca. 2 m bis 10 m; VDI 2014). Nach § 8 (2) sind B-Pläne aus dem FNP zu entwickeln, sodass die dort getroffenen Regelungen berücksichtigt werden müssen. B-Pläne bieten u.a. über folgende Festsetzungen die Möglichkeit stadtklimatischen Anforderungen zu begegnen (vgl. § 9 (1) BauGB):

- Gebäudekörperstellung und Maß der baulichen Nutzung (u.a. Grundflächenzahl, Geschoßflächenzahl, Zahl der Vollgeschosse bzw. Höhe der baulichen Anlage), jeweils auch mit dem Ziel klimarelevante Luftströmungen zu unterstützen und Belüftungssachen zu sichern
- Öffentliche und private Grünflächen (Parkanlagen, Kleingärten, Sport-, Spielplätze, Friedhöfe, etc.)
- Begrünung von Straßenzügen, Parkplätzen und Gleistrassen
- Anpflanzen bzw. Erhalt von Bäumen, Sträuchern und sonstigen Bepflanzungen
- Dach- und Fassadenbegrünung

Mit der anstehenden Novellierung des Gesetzes über die Umweltverträglichkeitsprüfung (UVPG) finden die Belange des Klimaschutzes und der Klimaanpassung verstärkt Eingang in die Umweltverträglichkeitsprüfung (UVP) als übergeordnetes umweltpolitisches Instrument.
3 Methode der modellgestützten Stadtklimaanalyse

3.1 DAS STADTKLIMAMODELL FITNAH 3D

Sofern ausreichend detaillierte Eingangsdaten zur Verfügung stehen, ist das Modell FITNAH 3D in der Lage, räumlich hoch aufgelöste Berechnungen in einem 10 x 10 m-Raster durchzuführen und ermöglicht damit mikroskalige Stadtklimaanalysen.

GRUNDLAGEN MESO- UND MIKROSKALIGER MODELLE

Die Verteilung lokalklimatisch relevanter Größen wie Wind und Temperatur können mit Hilfe von Messungen ermittelt werden. Aufgrund der großen räumlichen und zeitlichen Variation der meteorologischen Felder im Bereich einer komplexen Umgebung sind Messungen allerdings nur punktuell repräsentativ und eine Übertragung in benachbarte Räume selten möglich. Stadtklimamodelle wie FITNAH 3D können zu entscheidenden Verbesserungen dieser Nachteile herangezogen werden, indem sie physikalisch fundiert die räumlichen und/oder zeitlichen Lücken zwischen den Messungen schließen, weitere meteorologische Größen berechnen und Wind- bzw. Temperaturfelder in ihrer raumfüllenden
Struktur ermitteln. Die Modellrechnungen bieten darüber hinaus den Vorteil, dass Planungsvarianten und Ausgleichsmaßnahmen in ihrer Wirkung und Effizienz studiert und auf diese Art und Weise optimierte Lösungen gefunden werden können.

Die Auswertungen der FITNAH-Modellierung beziehen sich auf das bodennahe Niveau der Modellrechnung (2 m ü. Gr. = Aufenthaltsbereich der Menschen).

Abb. 9: Temperaturverlauf und Vertikalprofil der Windgeschwindigkeit zur Mittagszeit verschiedener Landnutzungen
3.2 BETRACHTETE WETTERLAGE

Die durchgeführte numerische Simulation mit FITNAH 3D legt eine autochthone Wetterlage zugrunde. Diese wird durch wolkenlosen Himmel und einen nur sehr schwach überlagernden synoptischen Wind gekennzeichnet, sodass sich die lokalklimatischen Besonderheiten einer Stadt besonders gut ausprägen. Entsprechend wurden die großräumigen synoptischen Rahmenbedingungen folgendermaßen festgelegt:

- Relative Feuchte der Luftmasse 50%
- Bedeckungsgrad 0/8
- Kein überlagernder geostrophischer Wind

In Abb. 9 sind schematisch die für eine austauscharme sommerliche Wetterlage simulierten tageszeitlichen Veränderungen der Temperatur und Vertikalprofile der Windgeschwindigkeit zur Mittagszeit für die Landnutzungen Freiland, Stadt und Wald dargestellt. Beim Temperaturverlauf zeigt sich, dass unversiegelte Freiflächen wie z.B. Wiesen und bebaute Flächen ähnlich hohe Temperaturen zur Mittagszeit aufweisen können, während die nächtliche Abkühlung über Siedlungsflächen vor allem durch die Wärme speichernden Materialien deutlich geringer ist. Waldflächen nehmen eine mittlere Ausprägung ein, da die nächtliche Auskühlung durch das Kronendach gedämpft wird. Hinsichtlich der Windgeschwindigkeit wird die Hinderniswirkung von Bebauung und Vegetationsstrukturen im Vertikalprofil deutlich.

3.3 EINGANGSDATEN

Bei einem numerischen Modell wie FITNAH 3D werden zur Festlegung und Bearbeitung einer Aufgabenstellung eine Reihe von Eingangsdaten benötigt, die charakteristisch für die Landschaft des Untersuchungsgebiets sind und die größerskaligen meteorologischen Rahmenbedingungen wie Wetterlage oder Klimaszenario definieren. Für jede Rasterzelle müssen jeweils als repräsentativer Wert folgende Daten vorliegen:

- Geländedaten (z.B. Geländeöhne, Neigung, Orientierung)
- Nutzungsstruktur (Verteilung der Landnutzung, Digitales Landschaftsmodell)

Um flächendeckende Informationen für das gesamte Rechengebiet zu erhalten, wurden verschiedene Digitale Geländemodule (DGM) verwendet, nämlich ein DGM1 (2017) für Ulm und Umgebung, ein DGM5 für Neu-Ulm, ein DGM50 für Bayern außerhalb Neu-Ulms und das EU-DEM25 für einen kleinen Bereich in Baden-Württemberg, der noch durch kein anderes Höhenmodell abgedeckt war.

Die Landnutzung wurde anhand aktueller Luftbilder (Bezugsjahr 2016 für Ulm; 2017 für Neu-Ulm) abgeglichen und auf Plausibilität geprüft.

Oberflächen in die Modellrechnung mit ein, welcher in Abhängigkeit der Landnutzung parametrisiert wurde.

Abb. 10: Flächenkulisse "Ist-Zustand" mit Luftbild und ergänzenden FNP-Flächen/Innenentwicklungsgebieten

ABGRENZUNG UND BEWERTUNG DER KLIMAÖKOLOGISCH WIRKSAMEN NUTZUNGSSTRUKTUREN

Abb. 11: Schema der Wertezuordnung zwischen Flächen- und Punktinformation
4 Modellergebnisse ausgewählter Parameter

4.1 Vorgehensweise

4.2 Nächtlches Temperaturfeld

Allgemeines

Das Ausmaß der Temperaturabweichung im Siedlungsbereich ist vor allem von der Größe der Stadt und der Dichte der Überbauung abhängig. Doch auch über grünbestimmten Flächen weisen Luftvolumina keinen einheitlichen Wärmezustand auf. Die Abkühlungsraten natürlicher Oberflächen wird insb. von ihren thermischen Bodeneigenschaften (Wärmeleitfähigkeit und Wärmekapazität) sowie eventuell vorhandenen Oberflächenbedeckungen bestimmt (Bewuchs, Laubstreu, etc.). Dynamische Luftaustauschprozesse zwischen den Flächen, das Relief in Form von Geländehöhe, Exposition sowie Geländeneigung und die Lage im Mosaik der Landnutzungen überweisen einen Einfluss aus (bspw. macht es einen Unterschied, ob sich eine Freifläche neben einem Gewässer, Waldgebiet oder dicht versiegelten Bereich befindet).

Umgebung sind, wirken größere Gewässer auf bebaute Flächen am Tage klimatisch ausgleichend, während sie in der Nacht deren Abkühlung verringern.

ERGEBNISSE TEMPERATURFELD

Das sich um 04:00 Uhr in der Nacht einstellende Lufttemperaturfeld im Untersuchungsraum umfasst bei Minimalwerten von 9,6 °C über stadtfernen Freiflächen und Maximalwerten von 20,7 °C im Stadtkern eine Spannweite von 11,1 K. Die mittlere Temperatur im Untersuchungsgebiet liegt unter den angenommenen meteorologischen Rahmenbedingungen bei 13,8 °C.

4.3 KALTLUFTSTRÖMUNGSFELD

ALLGEMEINES

Die variable bodennahe Lufttemperaturverteilung bedingt horizontale und vertikale Luftdruckunterschiede, welche wiederum Auslöser für lokale thermische Windsysteme sind. In Ulm sind die wichtigsten nächtlichen Luftströmungen dieser Art Hangabwinde (reliefbedingte Ausgleichsströmung) und Flurwinde (thermisch bedingte Ausgleichsströmung).

Ab einer Geländeneigung von ein bis zwei Grad setzen nach Sonnenuntergang über natürlichen Oberflächen abwärts gerichtete Strömungen ein, weil die hangnahe Luft durch nächtliche Ausstrahlung stärker abkühlt als die freie Luft in gleicher Höhe. Aufgrund ihrer höheren Dichte fließt die kühler Bodenluft hangabwärts. Die Ausprägung dieses kleinräumigen Phänomens wird in erster Linie durch das
Temperaturdefizit zur umgebenden Luft und durch die Neigung des Geländes bestimmt (Mosimann et al. 1999). **Hangabwinde** erreichen maximale Abflussgeschwindigkeiten von etwa 3 m s⁻¹, ihre vertikale Mächtigkeit liegt zumeist unterhalb von 10 m (Hergert 1991). In ebener Lagen bilden sich unter günstigen Bedingungen sogenannte **Flurwinde** aus, die radial auf einen überwärmt Raum ausgerichtet sind. Flurwinde entstehen, wenn sich infolge der Überwärmung von überbauten oder versiegelten Gebieten gegenüber dem Umland ein lokales thermisches Tief aufbaut. Der resultierende Druckgradient kann daraufhin durch einströmende kühler Luftmassen aus dem Umland ausgeglichen werden (Kiese et al. 1988). Flurwinde sind eng begrenzte, oftmals nur gering ausgeprägte Strömungsphänomene (Geschwindigkeit i.d.R. deutlich < 2 m s⁻¹), die bereits durch einen schwachen überlagерnden Wind überdeckt werden können. Kleinräumige Strömungsphänomene, die zwischen einzelnen strukturellen Elementen innerhalb der Stadt auftreten, werden **Strukturwinde** genannt.

ERGEBNISSE KALTLUFTSTRÖMUNGSFELD

Die Kaltluftströmung ist in der vorliegenden Untersuchung ein wichtiger Parameter zur Beurteilung des Kaltluftshaushaltes, wobei sich vor allem die Luftaustauschprozesse am Stadtrand erst in der zweiten Nachthälfte vollständig entwickeln.

Abb. 13 zeigt das für den Zeitpunkt 04:00 Uhr modellierte Strömungsfeld für einen Ausschnitt des Ulmer Stadtgebiets, das sich während einer sommerlichen austauscharmen Strahlungswetternacht herausgebildet hat. Die momentane Strömungsrichtung und Strömungsgeschwindigkeit wird über die Pfeilrichtung und Pfeillänge in Form von Vektoren dargestellt. Im Strömungsfeld sind die Hinderniswirkung der Gebäude und die daraus resultierende Umlenkung oder Abschwächung der Strömung gut zu erkennen.

Die unterlegten Farben stellen die Windgeschwindigkeit flächenhaft dar. Abgebildet sind alle Rasterzellen mit einer Windgeschwindigkeit von mindestens 0,1 m s⁻¹, für die unter Berücksichtigung der gebietstypischen Ausprägung eine potenzielle klimaökologische Wirksamkeit angenommen werden kann.

Die für das 2 m-Niveau wiedergegebenen Strömungsgeschwindigkeiten reichen von vollkommener Windstille bis zu reliefbedingten Maximalwerten von ca. 3 m s⁻¹ südwestlich von Eggingen. Insgesamt liegen die Werte relativ hoch, da während der angenommenen autochthonen Wetterlage die thermisch induzierten Flurwinde durch die Reliefenergie der Schwäbischen Alb verstärkt werden. Im Kernbereich Ulms treten hohe Werte von bis zu 2 m s⁻¹ insb. in unbauten Abschnitten auf (u.a. entlang der Gleisanlagen nördlich des Hauptbahnhofs, auf dem Hauptfriedhof, im Blautal, auf dem Friedhof Söflingen und in der Kleingartenkolonie Unterer Kuhberg). In Richtung des dicht bebauten Zentrums nimmt die Strömungsgeschwindigkeit ab, vornehmlich aufgelockerte Siedlungsbereiche werden noch wirksam durchlüftet (>0,1 m s⁻¹), während in weiten Teilen der Stadtmitte und der Weststadt keine wirksame Strömung mehr erreicht wird. Ausnahmen bilden größere städtische Grün- und Freiflächen, deren Ausgleichsströmungen die umliegenden Siedlungsgebiete erreichen (z.B. Alter Friedhof und die Donauwiese).
Breite Straßenzüge, wie z.B. die Frauenstraße und Olgastraße begünstigen den Luftaustausch zwischen innerstädtischen Grünflächen und den angrenzenden bebauten Arealen.

Mit Blick auf das gesamte Untersuchungsgebiet (vgl. Abb. 3 in Kapitel 2.2.1) fällt auf, dass die Winde in der westlichen Hälfte deutlich stärker ausgeprägt sind als in der östlichen Hälfte. Dies ist auf das Relief zurückzuführen, welches auf der bayrischen Seite deutlich niedriger ist. Dementsprechend sind in Neu-Ulm die Hangabwinde schwächer ausgeprägt, während Flurwinde überwiegen.

Während allochthoner Wetterlagen (mit der für Ulm geltenden westlichen bis westsüdwestlichen Hauptanströmungsrichtung) nimmt das Donautal eine wichtige Durchlüftungsfunktion für das Ulmer Stadtgebiet ein. Wie dem Strömungsfeld in Abb. 13 zu entnehmen ist, spielt die Donau bei austauscharmen Wetterlagen jedoch nur eine untergeordnete Rolle.

Abb. 13: Nächtliches Strömungsfeld in einem Ausschnitt des Stadtgebiets Ulm (Windpfeile aggregiert auf eine Auflösung von 100 m)
4.4 KALT LUFTVOLUMENSTROM

ALLGEMEINES
Wie bereits im Vorkapitel zum autochthonen Windfeld erläutert, kommt den lokalen thermischen Windsystemen eine besondere Bedeutung beim Abbau von Wärme- und Schadstoffbelastungen größerer Siedlungsräume zu. Weil die potenzielle Ausgleichsleistung einer grünbestimmten Fläche aber nicht allein aus der Geschwindigkeit der Kaltluftströmung resultiert, sondern zu einem wesentlichen Teil durch ihre Mächtigkeit mitbestimmt wird (d.h. durch die Höhe der Kaltluftschicht), muss zur Bewertung der Grünflächen ein umfassenderer Klimaparameter herangezogen werden: der sogenannte Kaltluftvolumenstrom.

Vereinfacht ausgedrückt stellt der Kaltluftvolumenstrom das Produkt aus der Fließgeschwindigkeit der Kaltluft, ihrer vertikalen Ausdehnung (Schichthöhe) und der horizontalen Ausdehnung des durchflossenen Querschnitts (Durchflussbreite) dar. Er beschreibt somit diejenige Menge an Kaltluft in der Einheit m³, die in jeder Sekunde durch den Querschnitt beispielsweise eines Hanges oder einer Leitbahn fließt (Abb. 14). Da die Modellergebnisse nicht die Durchströmung eines natürlichen Querschnitts widerspiegeln, sondern den Strömungsdurchgang der gleichbleibenden Rasterzellenbreite (hier 1 m), ist der resultierende Parameter streng genommen nicht als Volumenstrom, sondern als Volumenstrom-Dichte aufzufassen.

Dieser Wert kann über ein 1 m breites, quer zur Luftströmung hängendes Netz veranschaulicht werden, das ausgehend von der Obergrenze der Kaltluftschicht bis hinab auf die Erdoberfläche reicht. Wird nun die Volumenstrom-Dichte mit 25 multipliziert, erhält man den rasterbasierten Kaltluftvolumenstrom der 25 m x 25 m breiten Rasterzelle. Um Modellergebnisse verschiedener Gitterauflösungen (z.B. 10, 25 und 50 m) direkt miteinander vergleichen zu können, empfiehlt es sich, die Kaltluftvolumenstromdichte (in m³ s⁻¹ m⁻¹) anstelle des Kaltluftvolumenstroms (in m³ s⁻¹) als Größe zu verwenden².

Wie auch die anderen Klimaparameter ist der Kaltluftvolumenstrom eine Größe, die während der Nachtstunden in ihrer Stärke und Richtung veränderlich ist. Der jeweilige Beitrag beschleunigender und bremsender Faktoren zur Dynamik der Strömung wird unter anderem stark von der bisherigen zeitlichen Entwicklung des Abflusses beeinflusst. So können sich beispielsweise die Kaltluftströmungen über einer Fläche im Laufe der Nacht dadurch ändern, dass die Fläche zunächst in einem Kaltluftabflussgebiet und später in einem Kaltluftsammelgebiet liegt. Letzteres kann als Hindernis auf nachfolgende Luftmassen sein.

ERGEBNISSE KALTLUFTVOLUMENSTROM

Die räumliche Ausprägung des Kaltluftvolumenstroms im Untersuchungsraum folgt im Wesentlichen dem Muster des Kaltluftströmungsfeldes, weicht an einigen Stellen jedoch von diesem ab.

Die geringsten Werte finden sich abermals im Stadtkern, der aufgrund der Hinderniswirkung der Bebauung nur beschränkt durchlüftet wird und in dem nur wenige Grünflächen hohen Kaltluftentstehungspotenzials vorhanden sind (Abb. 15). Die über Freiflächen mit Siedlungsbezug entstehende Kaltluft strömt als Ausgleichsleistung in Richtung der Siedlungsgebiete und sorgt für die höchsten Werte. Insbesondere entlang von Grünachsen dringt die Kaltluft auch in die Bebauung ein und kann dort die thermische Belastung senken. Im Laufe einer (autochthonen) Sommernacht steigt die Kaltluftmächtigkeit i.d.R. an, sodass geringe Hindernisse überwunden werden können. Beispielsweise können einzelne Grünflächen, die zwar nicht zusammen hängen, aber räumlich nahe liegen und durch nur wenige Hindernisse getrennt sind, als Trittsteine für Kaltluft dienen. Folglich sind die in das Siedlungsgebiet reichenden Kaltluftvolumenströme ausgeprägter als die Windgeschwindigkeiten in der Darstellung des Kaltluftströmungsfeldes.

4.5 THERMISCHE BELASTUNG AM TAGE

ALLGEMEINES

Meteorologische Parameter wirken nicht unabhängig voneinander, sondern in biometeorologischen Wirkungskomplexen auf das Wohlbefinden des Menschen ein. Zur Bewertung werden Indizes verwendet (Kenngrößen), die Aussagen zur Lufttemperatur und Luftfeuchte, zur Windgeschwindigkeit sowie zu kurz- und langwelligen Strahlungsflüssen kombinieren. Wärmehaushaltsmodelle berechnen den Wärmeaustausch einer „Norm-Person“ mit seiner Umgebung und können so die Wärmelastung eines
Menschen abschätzen³. Beispiele für solche Kenngrößen sind der PMV-Wert (Predicted Mean Vote) und der UTCI (Universal Thermal Climate Index).

In der vorliegenden Arbeit wird zur Bewertung der Tagsituation der humanbioklimatische Index PET um 14:00 Uhr herangezogen (Physiologisch Äquivalente Temperatur; vgl. Höppe und Mayer 1987). Gegenüber vergleichbaren Indizes hat dieser den Vorteil, aufgrund der °C-Einheit auch von Nichtfachleuten besser nachvollzogen werden zu können. Darüber hinaus handelt es sich bei der PET um eine Größe, die sich in der Fachwelt zu einer Art „Quasi-Standard“ entwickelt hat, sodass sich die Ergebnisse aus Ulm mit denen anderer Städte vergleichen lassen. Wie die übrigen humanbiometeorologischen Indizes bezieht sich die PET auf außenklimatische Bedingungen und zeigt eine starke Abhängigkeit von der Strahlungstemperatur (Kuttler 1999). Mit Blick auf die Wärmelastung ist sie damit vor allem für die Bewertung des Aufenthalts im Freien am Tage sinnvoll einsetzbar. Im Gegensatz zur Lufttemperatur bezieht sich die PET auf die Höhe des mittleren Körperschwerpunktes des Menschen, nämlich auf 1,1 m ü. Grund.

Für die PET existiert in der VDI-Richtlinie 3787, Blatt 9 eine absolute Bewertungsskala, die das thermische Empfinden und die physiologische Belastungsstufen quantifizieren (z.B. Starke Wärmebelastung ab PET 35 °C; Tabelle 1; VDI 2004).

<table>
<thead>
<tr>
<th>PET</th>
<th>Thermisches Empfinden</th>
<th>Physiologische Belastungsstufe</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 °C</td>
<td>Sehr kalt</td>
<td>Extreme Kältebelastung</td>
</tr>
<tr>
<td>8 °C</td>
<td>Kalt</td>
<td>Starke Kältebelastung</td>
</tr>
<tr>
<td>13 °C</td>
<td>Kühl</td>
<td>Mäßige Kältebelastung</td>
</tr>
<tr>
<td>18 °C</td>
<td>Leicht kühI</td>
<td>Schwäche Kältebelastung</td>
</tr>
<tr>
<td>20 °C</td>
<td>Behaglich</td>
<td>Keine Wärmebelastung</td>
</tr>
<tr>
<td>23 °C</td>
<td>Leicht warm</td>
<td>Schwache Wärmebelastung</td>
</tr>
<tr>
<td>29 °C</td>
<td>Warm</td>
<td>Mäßige Wärmebelastung</td>
</tr>
<tr>
<td>35 °C</td>
<td>Heiß</td>
<td>Starke Wärmebelastung</td>
</tr>
<tr>
<td>41 °C</td>
<td>Sehr heiß</td>
<td>Extreme Wärmebelastung</td>
</tr>
</tbody>
</table>

ERGEBNISSE

Im Vergleich zur Lufttemperatur weist die PET eine höhere Spannbreite im Untersuchungsgebiet auf. PET-Werte ≤ 23 °C (keine Wärmebelastung) sind nur in Waldbereichen zu finden, z.B. Maienwald, Klingensteiner Wald (Abb. 16). Ebenso sind die Waldabschnitte am Donaufer zum Großteil unbelastet, da das Gewässer tagsüber eine kühle Wirkung entfaltet. Auch die übrigen Waldgebiete heben sich mit einer schwachen Wärmebelastung (PET ≤ 29 °C) von den anderen Grünflächen ab. Der mittlere Körperschwerpunkt des Menschen in 1,1 m ü. Gr. liegt unterhalb des Kronendachs und ist somit vor direkter Sonneneinstrahlung geschützt, sodass Wälder als Rückzugsorte dienen können.

Alle weiteren Flächen weisen unter den gegebenen Annahmen eines autochthonen Sommertags (keine Bewölkung, d.h. ungehinderte Einstrahlung) mindestens eine mäßige Wärmebelastung auf, wobei der Siedlungsraum größtenteils von einer starken Wärmebelastung betroffen ist. Die höchsten Werte werden über großen Gleisanlagen, im Straßenraum und auf hoch versiegelten Gewerbeflächen erreicht (bis zu

³ Energiebilanzmodelle für den menschlichen Wärmehaushalt bezogen auf das Temperaturrempfinden einer Durchschnittsperson („Klima-Michel“ mit folgenden Annahmen: 1,75 m, 75 kg, 1,9 m² Körperoberfläche, etwa 35 Jahre; vgl. Jendritzky 1990).
mehr als 41 °C PET; extreme Wärmebelastung). Durch die ungehinderte Sonneneinstrahlung erreicht die thermische Belastung über unversiegelten Freiflächen fast ähnlich hohe Werte. Im Gegensatz zur Situation in der Nacht fällt die thermische Belastung in der Zentrumsbebauung weniger stark aus, da die dichte und zumeist hohe Bebauung für eine gewisse Verschattung sorgt. Innerhalb des Stadtkerns zeichnen sich Parkareale wie der Blaupark und die Grünflächen entlang der Donau mit einer vergleichsweise geringen Wärmebelastung aus.

Abb. 16: Wärmebelastung am Tage in einem Ausschnitt des Stadtgebiets Ulm mit beispielhaften Werten verschiedener Nutzungsstrukturen
5 Klimaanalysekarte

5.1 VORGEHENSWEISE

5.2 ERGEBNISSE

BIOKLIMATISCHE BELASTUNG IN DEN SIEDLUNGS- UND GEWERBEFLÄCHEN

Die nächtliche Überwärmung beruht auf dem Temperaturunterschied zu den Grünflächen der Stadt Ulm, die unter den angenommenen Bedingungen eine mittlere Lufttemperatur von 12,2 °C aufweisen. Der Wärmeinseleffekt ergibt sich als Abweichung von diesem Bezugswert und stellt somit eine geeignetere Kenngröße zur Erfassung des Stadtklimaeffekts dar als absolute Temperaturwerte.

Die mittlere nächtliche Lufttemperatur über allen Siedlungs- und Gewerbeflächen im Stadtgebiet liegt bei 16,5 °C. Bei Betrachtung der Flächenanteile zeigt sich, dass nahezu alle bebauten Flächen eine Überwärmung > 2 K aufweisen, darunter der Großteil Werte von > 4 K (82,7 %) und mehr als ein Drittel sogar > 6 K (Tabelle 2). Die Anteile beziehen sich auf Siedlungs- und Gewerbeflächen innerhalb des Stadtgebiets, wobei aufgelockerte Areale mit Einzel- und Reihenhausbebauung tendenziell durch eine geringere und Gewerbeflächen sowie Zentrums- und Hochhausbebauung durch eine stärkere Überwärmung geprägt sind.

KALTLUFTWEINWIRKBEREICH

Siedlungsräume lassen sich in ausreichend durchlüftete Areale und damit meist klimatisch günstige Siedlungsstrukturen sowie klimatische Belastungsbereiche untergliedern. Der Kaltluftweinwirkbereich kennzeichnet das bodennahe Ausströmen der Kaltluft aus den Grünflächen in die angrenzende Bebauung während einer autochthonen Sommernacht. Damit geht einher, dass die im Einwirkbereich befindliche Bebauung in der Nacht vergleichsweise günstigere Verhältnisse aufweist. Als Kaltluftweinwirkbereich sind Siedlungs- und Gewerbeflächen innerhalb des Stadtgebiets gekennzeichnet, die von einem überdurchschnittlich hohen Kaltluftvolumenstrom von mindestens 30 m³ s⁻¹ m⁻¹ durchflossen werden (Mittelwert des Kaltluftvolumenstroms über alle Grünflächen im Stadtgebiet) oder durch eine Windgeschwindigkeit von mind. 0,2 m s⁻¹ gekennzeichnet sind. Dabei erfolgt die Darstellung rastergenau

⁴ Die KlimaanalysekarGer ersetzt nach VDI-Richtlinie 3787, Blatt 1 die ehemalige synthetische Klimafunktionskarte (VDI 2014).
auf Ebene der Modellergebnisse, d.h. ggf. werden nur Teile einer Blockfläche als Kaltlufteinwirkbereich ausgewiesen.

Tabelle 2: Flächenanteile der nächtlichen Überwärmung im Siedlungs- und Gewerberaum

<table>
<thead>
<tr>
<th>Nächtlicher Wärmeinseleffekt [K]</th>
<th>Flächenanteil im Stadtgebiet [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>bis 2</td>
<td>1,7</td>
</tr>
<tr>
<td>> 2 bis 3</td>
<td>3,8</td>
</tr>
<tr>
<td>> 3 bis 4</td>
<td>11,8</td>
</tr>
<tr>
<td>> 4 bis 5</td>
<td>25,9</td>
</tr>
<tr>
<td>> 5 bis 6</td>
<td>22,5</td>
</tr>
<tr>
<td>> 6 bis 7</td>
<td>16,9</td>
</tr>
<tr>
<td>> 7</td>
<td>17,4</td>
</tr>
</tbody>
</table>

Innerhalb des Stadtgebiets gelten mit 44,5 % fast die Hälfte der Siedlungs- und Gewerbeflächen als Kaltluftseinwirkbereich. Mehrheitlich handelt es sich dabei um Flächen in den Randbereichen – in der Innenstadt treten sie nur vereinzelt auf.

KALTLUFTPROZESSES ÜBER GRÜN- UND FREIFLÄCHEN

In der Klimaanalysekarte wird das Prozessgeschehen des Kaltluftthaushalts dargestellt, d.h. der Kaltluftvolumenstrom wird in Form quantitativer Angaben in abgestufter Flächenfarbe abgebildet, ohne eine Bewertung vorzunehmen (Abb. 17). Zudem werden *Flurwinde* ab einer (als wirksam angesehenen) Windgeschwindigkeit von 0,1 m s⁻¹ durch Pfeilsignatur in Hauptströmungsrichtung gezeigt, sofern sie eine bedeutende Rolle für das Kaltluftprozessgeschehen spielen. Der Übersichtlichkeit halber wurde das Windfeld in eine Auflösung von 200 m aggregiert.

Kaltluftleitbahnen sind vorwiegend thermisch induzierte und auf das Siedlungsgebiet ausgerichtete linienhafte Strukturen, die Flurwinde in das Stadtgebiet hineintragen. Zusätzlich werden die thermisch induzierten Winde durch das Relief im Ulmer Stadtgebiet verstärkt: So befinden sich viele Leitbahnen in Talbereichen und sind durch besonders hohe Kaltluftvolumenströme gekennzeichnet. Im Gegensatz zu den
Kaltluftleitbahnen, die in ihrer Breite auf wenige 100 m begrenzt sind, treten *Kaltluftabflüsse* flächenhaft über unbebauten Hangbereichen auf.

Abb. 17: Klimaanalysekarte für einen Ausschnitt des Ulmer Stadtgebiets (gesamtstädtische Darstellung im A3-Format im Anhang)
Insgesamt sind fünf Kaltluftleitbahnen bzw. Kaltluftleitbahnbereiche ausgewiesen, die aufgrund ihrer Lage und Charakteristika als besonders wichtig für die großräumige Durchlüftung des Ulmer Stadtgebiets gesehen werden. Sie verteilen sich rund um die Kernstadt (Stadtteile Stadtmitte, Oststadt, Weststadt, Söflingen, Eselsberg) und sind an Fluss- und Bachläufe bzw. Täler (Örlinger Tal, Lehrer Tal, Blautal, Roter Bach) oder an eine weitläufige Grünfläche (Friedhof Söflingen und die daran südlich angrenzende Kleingartenkolonie) gebunden. Daneben gibt es viele Bereiche, die zwar nicht als übergeordnete Kaltluftleitbahn ausgewiesen wurden, in denen die Flurwinde lokal dennoch eine wichtige Durchlüftungsfunktion erfüllen (siehe Strömungsfeld in Abb. 13).

Kaltluftentstehungsgebiete kennzeichnen Grünflächen mit einer deutlich überdurchschnittlichen Kaltluftproduktionsrate und speisen die Kaltluftleitbahnen (Flurwinde zeigen in Richtung der Kaltluftleitbahnen) bzw. reichen auch über diese hinaus. Die Kaltluftproduktionsrate der Ulmer Kaltluftentstehungsgebiete beträgt mindestens 16 m³ m⁻² h⁻¹.

Die Prozessräume wurden auf der Basis einer Einzugsgebietsanalyse nach King ausgewiesen. Als klimaökologische Prozessräume werden größere zusammenhängende Gebiete mit einem einheitlichen übergeordneten Strömungsmuster definiert. Das Strömungsgeschehen in der Stadt Ulm wird bei austauscharen Wetterlagen vorrangig durch das Relief bestimmt. In der Klimaanalysekarte wurden die Prozessräume flächendeckend für das gesamte Stadtgebiet definiert.
6 Planungshinweiskarten

6.1 VORGEHENSWEISE

STANDARDISIERUNG DER PARAMETER (Z-TRANSFORMATION)

Erstrebenswert wäre zudem, die Beurteilungskriterien sowohl mit der Ausprägung zusätzlich modellierter Variablen als auch mit den Ergebnissen anderer Untersuchungen vergleichen zu können. Um eine solche Vergleichbarkeit herzustellen, wurden die Parameter über eine *z-Transformation* standardisiert. Rechnerisch bedeutet diese, dass von jedem Ausgangswert der Variablen das arithmetische Gebietsmittel abgezogen und durch die Standardabweichung aller Werte geteilt wird. Hieraus ergeben sich Bewertungskategorien, deren Abgrenzung durch den Mittelwert (= 0) und positive sowie negative Standardabweichungen (S₁) von diesem Mittelwert festgelegt sind (standardmäßig vier Bewertungskategorien durch Mittelwert, obere und untere S₁-Schranke; Abb. 18).

![Abb. 18: Veranschaulichung der Standardisierung zur vergleichenden Bewertung von Parametern (z-Transformation)]
Tabelle 3: Einordnung der bioklimatischen Belastung im Wirkungsraum in der Nacht (Lufttemperatur \(T_a \)) sowie am Tage (PET) und Flächenmittelwert sowie Standardabweichung (sd) der meteorologischen Parameter für die entsprechenden Flächen im Stadtgebiet Ulms

<table>
<thead>
<tr>
<th>Qualitative Einordnung</th>
<th>(T_a) [^{[°C]}) (04:00 Uhr)</th>
<th>PET [^{[°C]}) (14:00 Uhr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 = Sehr günstig</td>
<td>bis -0,33</td>
<td>bis 34,7</td>
</tr>
<tr>
<td></td>
<td>> -0,33 bis 1</td>
<td>> 34,7 bis 36,45</td>
</tr>
<tr>
<td></td>
<td>> 1 bis 1,66</td>
<td>> 36,45 bis 37,95</td>
</tr>
<tr>
<td></td>
<td>> 1,66</td>
<td>> 37,95 bis 39,7</td>
</tr>
<tr>
<td></td>
<td>> 0,3 bis 1</td>
<td>> 39,7</td>
</tr>
<tr>
<td></td>
<td>> 0,3 bis 1</td>
<td>> 39,7</td>
</tr>
<tr>
<td></td>
<td>Mittelwert (± sd)</td>
<td>16,5 (± 1,5)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>37,2 (± 2,5)</td>
</tr>
</tbody>
</table>

6.1.2 BEWERTUNG DER SIEDLUNGS- UND GEWERBFLÄCHEN (WIRKUNGSRAUM)

Der Siedlungsraum stellt den primären Wirkungsraum des stadtklimatischen Prozessgeschehens dar. Im Folgenden wird die Herleitung der bioklimatischen Belastungssituation schildert.

BEWERTUNG DER NACHTSITUATION

In der Nacht ist weniger der Aufenthalt im Freien Bewertungsgegenstand, sondern vielmehr die Möglichkeit eines erholten Schlafes im Innenraum. Die VDI-Richtlinie 3787, Blatt 2 weist darauf hin, dass die „Lufttemperatur der Außenluft die entscheidende Größe“ für die Bewertung der Nachtsituation darstellt und näherungsweise ein direkter Zusammenhang zwischen Außen- und Innenraumluft unterstellt werden kann (VDI 2008b, 25). Als optimale Schlaftemperaturen werden gemeinhin 16 - 18 °C angegeben (UBA 2016), während Tropennächte mit einer Minimumtemperatur \(\geq 20 \) °C als besonders belastend gelten. Eine mit der PET vergleichbare Bewertungsskala existiert für die nächtliche Situation im Innenraum (noch) nicht.

BEWERTUNG DER TAGSITUATION

Zur Bewertung der Tagsituation wurde der humanbioklimatische Index PET um 14:00 Uhr herangezogen. Für die PET existiert in der VDI-Richtlinie 3787, Blatt 9 eine absolute Bewertungsskala, die das thermische

Empfinden und die physiologische Belastungsstufen quantifizieren (vgl. Tabelle 1 Tabelle 1 auf S. 25; VDI 2004). Die Bewertung der thermischen Belastung im Stadtgebiet Ulms orientiert sich daran, basiert jedoch letztlich auf einer z-Transformation, um das Verhältnis zwischen den Flächen im Stadtgebiet darstellen zu können (hier in fünf Klassen von Sehr günstig bis Sehr ungünstig; Tabelle 3) – fast alle Siedlungs- und Gewerbeflächen sind mit PET-Werten zwischen 35 und 41 °C stark wärmebelastet.

Am Tage ist die Aufenthaltsqualität auf Straßen, Wegen und Plätzen (kurz: Straßenraum) von Bedeutung, jedoch ist eine Bewertung des Straßenraumes anhand der PET in diesem Fall nicht aussagekräftig. Dies ist auf die verwendete Gitterauflösung von 25 m zurückzuführen, bei der Straßenbäume aufgrund ihres geringen Kronendurchmessers und ihres punktuellen Auftretens (im Gegensatz zum Wald) nicht erfasst werden können. Da Straßenbäume bzw. die daraus resultierende Verschattung aber einen starken Einfluss auf die PET am Tage nehmen, sind die Modellergebnisse der PET für den Straßenraum mit Unsicherheiten behaftet. Um dennoch Aussagen über den Straßenraum treffen zu können, wurde statt der PET-Modellergebnisse in 25 m Auflösung die Verschattungssituation näher betrachtet.

Die Verschattung beruht auf dem LOD1-Stadtmodell (Gebäude mit Höheninformation) und dem Straßenbaumkataster (Bäume auf öffentlichem Grün mit Informationen zu Höhe und Kronendurchmesser). Die Gebäude- und Bauminformationen mitsamt ihrer Höhenangabe wurden in eine 1m-Auflösung gerastert. Anschließend wurde in ESRI ArcGIS die Verschattung über das Hillshade-Werkzeug berechnet ("Schummerung"). Die in der Planungshinweiskarte dargestellte Verschattung beruht auf einem exemplarischen Sommertag (21.6.) um 14 Uhr. Gegenüber den PET-Modellergebnissen, in die die Verschattung zu einem gewissen Grad ebenfalls einfließt, hat die auf diese Weise bestimmte Verschattung den Vorteil, auch den Schattenwurf einzelner (kleinkroniger) Bäume zu erfassen und damit genauere Ergebnisse (und zwar in 1 m Auflösung) zu liefern.

Die bioklimatische Bewertung am Tage ist ein Maß für die Aufenthaltsqualität in den Siedlungsflächen außerhalb von Gebäuden. Dieses übt einen gewissen Einfluss auf die Situation innerhalb der Gebäude aus, doch hängt das Innenraumklima von vielen weiteren Faktoren ab und kann hier nicht bestimmt werden.

6.1.3 BEWERTUNG DER GRÜN- UND FREIFLÄCHEN (AUSGLEICHSSRAUM)

Die Grünflächen wurden für die Tag- und Nacht-Situation getrennt bewertet und in vier Stufen von Geringe bis Sehr hohe bioklimatische Bedeutung eingeteilt. Die Bewertung ist anthropozentrisch ausgerichtet, d.h. Flächen, die für den derzeitigen Siedlungsraum keine Funktion erfüllen bzw. keinen Ausgleichsraum darstellen, wurden gering bewertet.6 Im Falle zusätzlicher Bebauung im Bereich dieser Flächen kann sich deren Funktion ändern und muss ggf. neu bewertet werden.

6 Selbst ohne Siedlungsbezug bzw. Funktion für das Kaltluftprozessgeschehen sind Grünflächen aus stadtklimatischer Sicht bebauten Flächen zu bevorzugen, sodass die Klasse Sehr geringe Bedeutung nicht vergeben wurde.
BEWERTUNG DER GRÜNFLÄCHEN IN DER NACHT

Tabelle 4: Einordnung des Kaltluftvolumenstroms (z-Transformation)

<table>
<thead>
<tr>
<th>Mittlerer z-Wert</th>
<th>Kaltluftvolumenstrom (04:00 Uhr) [m³ s⁻¹ m⁻¹]</th>
<th>Qualitative Einordnung</th>
</tr>
</thead>
<tbody>
<tr>
<td>bis -0,5</td>
<td>bis 19</td>
<td>Gering</td>
</tr>
<tr>
<td>> -0,5 bis 0</td>
<td>> 19 bis 31</td>
<td>Mittel</td>
</tr>
<tr>
<td>> 0 bis 1</td>
<td>> 31 bis 55</td>
<td>Hoch</td>
</tr>
<tr>
<td>> 1</td>
<td>> 55</td>
<td>Sehr hoch</td>
</tr>
</tbody>
</table>

Zusätzlich wurde die Entfernung zu belasteten Siedlungsräumen berücksichtigt – da in der Nachtsituation die Möglichkeit eines erholsamen Schlafs im Vordergrund steht, wurden dabei der Bewertung nur Siedlungsflächen ohne Gewerbe zugrunde gelegt.

Im Einzelnen wurde folgender Bewertungsschlüssel verwendet:

Sehr hohe bioklimatische Bedeutung (4)

a) Grünflächen, die Teil einer Leitbahn bzw. Kaltluftentstehungsgebiet sind.

b) Freiflächen bzw. ≥ 1 ha große Grünflächen im Nahbereich von Siedlungsflächen mit Ungünstiger (bis 250 m Entfernung) bzw. Mittlerer Situation (bis 100 m).

Hohe bioklimatische Bedeutung (3)

c) Grünflächen, die direkt an Leitbahnen angrenzen.

d) Grünflächen < 1 ha mit mindestens Mittlerem Kaltluftvolumenstrom (KVS) im Nahbereich von Siedlungsflächen mit Ungünstiger (bis 250 m Entfernung) bzw. Mittleren bioklimatischen Situation (bis 100 m).

e) Mindestens 1 ha große Grünflächen im Umfeld von Siedlungsflächen mit Ungünstiger (bis 500 m Entfernung) bzw. Mittleren bioklimatischen Situation (bis 250 m).

f) Jeweils ≥ 1 ha große Grünflächen mit Sehr hohem bzw. Freiflächen mit mindestens Hohem KVS und Siedlungsbezug (außerhalb des in e) genannten Entfernungsbereichs, jedoch in maximal 1 km Entfernung zu Siedlungsgebieten).
Auch ohne Leitbahn-Funktion während autochthoner Sommernächte und direkten Siedlungsbezug können Grünflächen, darunter insb. Freiflächen, während anderer Wetterlagen eine wichtige Rolle für die Durchlüftung einer Stadt einnehmen.

Mittlere bioklimatische Bedeutung (2)

g) Grünflächen < 1 ha mit Geringem KVS im Nahbereich von Siedlungsflächen mit Ungünstiger (bis 250 m Entfernung) bzw. Mittleren bioklimatischer Situation (bis 100 m).
 Innerhalb vom Belastungsräumen sind auch Grünflächen ohne Funktion für den Kaltlufthaushalt wertvoll, da sie sich am Tage weniger stark aufheizen und entsprechend in der Nacht weniger Wärme abgeben.

h) Grünflächen < 1 ha mit mindestens Mittleren KVS im Umfeld von Siedlungsflächen mit Ungünstiger (bis 500 m Entfernung) bzw. Mittleren bioklimatischer Situation (bis 250 m).

i) Jeweils ≥ 1 ha große Grünflächen mit mindestens Hohem KVS bzw. übrige Freiflächen mit Siedlungsbezug (vgl. f)).

j) Übrige Grünflächen mit mindestens Hohem Kaltluftvolumenstrom.

Geringe bioklimatische Bedeutung (1)

k) Übrige Grünflächen, die keine der genannten Kriterien erfüllen.

BEWERTUNG DER GRÜNFLÄCHEN AM TAGE

Für den Tag basiert die Bewertung der Grünflächen hauptsächlich auf der Entfernung zu belasteten Siedlungs- und Gewerberäumen sowie der PET am Tag. Im Unterschied zur Nachtsituation ist eine möglichst hohe Aufenthaltsqualität auch im Umfeld von Gewerbeflächen relevant, um den Beschäftigten Rückzugsorte zu bieten. Das Klima der Grünflächen wurde anhand der PET in vier Klassen entsprechend der Wärmebelastungsstufen (VDI-Richtlinie 3787, Blatt 9; VDI 2004) von Günstig bis Ungünstig eingeteilt (Tabelle 5).

Tabelle 5: Einordnung der PET für die Bewertung der Grünflächen am Tag

<table>
<thead>
<tr>
<th>PET [°C]</th>
<th>Qualitative Einordnung</th>
<th>Physiologische Belastungsstufe</th>
</tr>
</thead>
<tbody>
<tr>
<td>bis 29</td>
<td>Günstiges Grünflächenklima</td>
<td>Max. schwache Wärmebelastung</td>
</tr>
<tr>
<td>> 29 bis 35</td>
<td>Mittleres Grünflächenklima</td>
<td>Mäßige Wärmebelastung</td>
</tr>
<tr>
<td>> 35 bis 41</td>
<td>Weniger Günstiges Grünflächenklima</td>
<td>Starke Wärmebelastung</td>
</tr>
<tr>
<td>> 41</td>
<td>Ungünstiges Grünflächenklima</td>
<td>Extreme Wärmebelastung</td>
</tr>
</tbody>
</table>

Der Einstufung liegt folgender Bewertungsschlüssel zugrunde:

Sehr hohe bioklimatische Bedeutung (4)

a) Grünfläche mit Günstigem oder Mittlerem Klima aus Siedlungsflächen Sehr ungünstiger oder Ungünstiger bioklimatischer Situation fußläufig sehr gut erreichbar⁷ (300 m).
 Je stärker die bioklimatische Belastung im Siedlungsgebiet, desto wichtiger ist eine für alle Bevölkerungsgruppen fußläufige Erreichbarkeit schattenspendender Grünflächen als Rückzugsorte, sodass die

⁷ Eine sehr gute bzw. gute fußläufige Erreichbarkeit wird über eine maximale Wegstrecke von 5 bzw. 10 min definiert. Bei einer angenommenen Gehgeschwindigkeit von 1 m s⁻¹ (3,6 km h⁻¹) entspricht dies einer Entfernung von 300 bzw. 600 m. Vereinfachend bezieht sich diese auf die Luftlinie ohne die tatsächliche Wegeführung zu berücksichtigen (Ampeln, kein Durchgang, etc.).
tolerierbare Entfernung zu diesen gewichtet wurde. Maßgeblich für die Aufenthaltsqualität ist die Existenz ausreichend beschatteter Flächen, d.h. ein angenehmes Grünflächenklima sollte vorhanden sein.

b) Grünfläche mit **Günstigem Klima** aus Siedlungsflächen **Sehr ungünstiger oder Ungünstiger** bzw. **Mittlerer bioklimatischer Situation** fußläufig gut bzw. sehr gut erreichbar (600 m bzw. 300 m).

Hohe bioklimatische Bedeutung (3)

c) Grünfläche mit **Mittlerem Klima** aus Siedlungsflächen **Sehr ungünstiger oder Ungünstiger** bzw. **Mittlerer bioklimatischer Situation** fußläufig gut bzw. sehr gut erreichbar (600 m bzw. 300 m).

d) Grünfläche mit **Günstigem Klima** aus Siedlungsflächen **Mittlerer** bzw. **Günstiger bioklimatischer Situation** fußläufig mindestens gut bzw. sehr gut erreichbar (600 m bzw. 300 m).

e) Übrige Grünflächen mit **Günstigem Klima**.

Mit einer hohen Verschattung können auch Grünflächen ohne direkten Siedlungsbezug bzw. im Umfeld von Siedlungsflächen günstigen Bioklimas wichtige Rückzugsorte darstellen (z.B. Wälder als Naherholungsgebiete).

Mittlere bioklimatische Bedeutung (2)

f) Grünflächen mit **weniger Günstigem Klima** aus Siedlungsflächen **Sehr ungünstiger, Ungünstiger oder Mittlerer** bzw. **Günstiger bioklimatischer Situation** fußläufig mindestens gut bzw. sehr gut erreichbar (600 m bzw. 300 m).

g) Übrige Grünflächen mit **Mittlerem Klima**

Gerings bioklimatische Bedeutung (1)

h) Übrige Grünflächen mit **Weniger Günstigem** oder **Ungünstigem** Klima.

6.2 ERGEBNISSE

NACHTSITUATION

Flächen mit einer **Ungünstigen bioklimatischen Situation** machen unter reinen (Wohn-)Siedlungen den geringsten Anteil von 9 % aus, betreffen allerdings große Bereiche der Innenstadt (Abb. 19, Tabelle 6). In den Gebieten nahe der Innenstadt ist ebenfalls eine erhöhte nächtliche Überwärzung vorzufinden (gesamtstädtisch 15,7 % Anteil **Mittel** bewerteter Flächen), während sich die bioklimatische Situation mit zunehmender Entfernung zum Kernbereich tendenziell verbessert (mehr als die Hälfte der Wohnflächen weist eine **Günstige bioklimatische Situation** auf). Im gering besiedelten und durch einen höheren Grünanteil geprägten Rand- und Außenbereich herrschen überwiegend **Sehr günstige Verhältnisse** vor (16 % der Gesamtfläche).
Tabelle 6: Flächenanteile bioklimatisch belasteter Siedlungsgebiete in der Nacht und abgeleitete Planungshinweise

<table>
<thead>
<tr>
<th>Bewertung der Siedlungsflächen</th>
<th>Flächenanteil [%]</th>
<th>Allgemeine Planungshinweise</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 = Sehr günstig</td>
<td>Wohnen 16,0</td>
<td>Vorwiegend offene Siedlungsstruktur mit guter Durchlüftung und einer geringen Empfindlichkeit gegenüber Nutzungstensivierungen bei Beachtung klimäologischer Aspekte. Das sehr günstige Bioklima ist zu sichern. Maßnahmen zur Verbesserung der thermischen Situation sind nicht erforderlich. Der Vegetationsanteil sollte möglichst erhalten bleiben.</td>
</tr>
</tbody>
</table>

Bei den Gewerbeflächen verschieben sich die Flächenanteile deutlich. Der typischerweise hohe Versiegelungsgrad und geringe Grünanteil sorgen nachts für eine starke Überwärmung, sodass knapp 60 % der Gewerbeflächen eine Mittlere oder Ungünstige und nur 10,3 % eine Sehr günstige bioklimatische Situation aufweisen (Tabelle 6). Wie bereits erwähnt, steht nachts die Belastung in Wohnsiedlungsflächen im Vordergrund und Maßnahmen sind vor allem für den Erhalt bzw. möglichst die Verbesserung der Situation in belasteten Flächen nötig. Doch sollten aufgrund der hohen Belastungen Gewerbeflächen nicht außer Acht gelassen werden, insb. wenn sie einen räumlichen Bezug zu Wohnbebauungen aufweisen.

Den Grünflächen im Ulmer Stadtgebiet kommt mehr als die Hälfte eine Hohe bis Sehr hohe bioklimatische Bedeutung zuteil (knapp 18,7 % bzw. 39 %; Tabelle 7). Diese gilt in Bezug auf das derzeit vorhandene Siedlungsgebiet. 18,4 % der Grünflächen weisen eine Geringe Bedeutung auf, d.h. sie erfüllen für den derzeitigen Siedlungsraum keine Funktion bzw. stellen für diesen keinen Ausgleichsraum dar – mehrheitlich handelt es sich dabei um siedlungsferne Wald- und Ackerflächen bzw. Straßenbegleitgrün. Generell gilt, dass im Falle einer Bebauung der Flächen selbst bzw. in ihrer Umgebung die Bewertung neu vorgenommen werden muss.

TAGSITUATION

Auch am Tage sind deutliche Unterschiede zwischen der Aufenthaltsqualität im Freien in Wohnsiedlungsflächen und Gewerbegebieten zu erkennen. Wohngebiete zeigen mehrheitlich eine Mittlere bioklimatische Belastung (51,2 %) und der Anteil (Sehr) Günstiger Flächen überwiegt leicht gegenüber Ungünstigen (25,5 % gegenüber 23,3 %, Sehr ungünstig bewertete Flächen sind zu vernachlässigen; Abb. 20;

Über die Hälfte der Grünflächen wird eine mindestens Hohe Bedeutung zugeschrieben, d.h. sie bieten an Sommertagen eine relativ hohe Aufenthaltsqualität und eignen sich als (erreichbare) Rückzugsorte für die Bevölkerung (Tabelle 9). Die vielen und weitläufigen landwirtschaftlichen Flächen im Stadtgebiet Ulms erlauben aufgrund der meist ungehinderten Einstrahlung (unabhängig von der ohnehin fehlenden Zugänglichkeit) keinen Rückzug und sorgen für einen hohen Anteil an Grünflächen (Geringer oder Mittlerer Bedeutung (46,6 %)).

Tabelle 7: Flächenanteile bioklimatisch bedeutender Grünareale in der Nacht und abgeleitete Planungshinweise

<table>
<thead>
<tr>
<th>Bedeutung der Grünflächen</th>
<th>Flächenanteil [%]</th>
<th>Allgemeine Planungshinweise</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 = Geringe</td>
<td>18,4</td>
<td>Flächen stellen für die gegenwärtige Siedlungsstruktur keine relevanten Klimafunktionen bereit und weisen eine geringe Empfindlichkeit gegenüber Nutzungsintensivierung auf. Bauliche Eingriffe sollten unter Berücksichtigung der grundsätzlichen Klimafunktionen erfolgen.</td>
</tr>
<tr>
<td>3 = Hohe</td>
<td>18,7</td>
<td>Für die gegenwärtige Siedlungsstruktur wichtige klimaökologische Ausgleichsräume mit einer hohen Empfindlichkeit gegenüber Nutzungsintensivierung. Bauliche Eingriffe sollten unter Berücksichtigung der grundsätzlichen Klimafunktionen erfolgen und eine gute Durchströmbarkeit der angrenzenden Bebauung angestrebt werden.</td>
</tr>
<tr>
<td>4 = Sehr hohe</td>
<td>39,0</td>
<td>Für die gegenwärtige Siedlungsstruktur besonders wichtige klimaökologische Ausgleichsräume mit einer sehr hohen Empfindlichkeit gegenüber Nutzungsintensivierung. Bauliche Eingriffe sollten gänzlich vermieden bzw. sofern bereits planungsrechtlich zulässig unter Berücksichtigung der grundsätzlichen Klimafunktionen erfolgen. Eine gute Durchströmbarkeit der angrenzenden Bebauung ist anzustreben und zur Optimierung der Ökosystemdienstleistung sollte eine Vernetzung mit benachbarten Grün-/ Freiflächen erreicht werden (Grünverbindungen).</td>
</tr>
</tbody>
</table>
Tabelle 8: Flächenanteile bioklimatisch belasteter Siedlungsgebiete am Tage und abgeleitete Planungshinweise

<table>
<thead>
<tr>
<th>Bewertung der Siedlungsflächen</th>
<th>Flächenanteil [%]</th>
<th>Allgemeine Planungshinweise</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 = Sehr günstig</td>
<td>Wohnen 6,5</td>
<td>Es liegen bioklimatisch günstige Bedingungen sowie ein hoher Grünanteil vor, die es jeweils zu erhalten gilt. Maßnahmen zur Verbesserung der thermischen Situation sind nicht erforderlich.</td>
</tr>
<tr>
<td></td>
<td>Gewerbe 4,7</td>
<td></td>
</tr>
<tr>
<td>2 = Günstig</td>
<td>Wohnen 19,0</td>
<td>Es liegen überwiegend bioklimatisch günstige Bedingungen sowie ein ausreichender Grünanteil vor, die es jeweils zu erhalten gilt. Maßnahmen zur Verbesserung der thermischen Situation sind nicht erforderlich.</td>
</tr>
<tr>
<td></td>
<td>Gewerbe 17,6</td>
<td></td>
</tr>
<tr>
<td>3 = Mittel</td>
<td>Wohnen 51,2</td>
<td>Maßnahmen zur Verbesserung der thermischen Situation werden empfohlen, z.B. in Form von Verschattungselementen bzw. zusätzlicher Begrünung. Ausgleichsräume sollten fußläufig erreichbar und zugänglich sein.</td>
</tr>
<tr>
<td></td>
<td>Gewerbe 31,7</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Gewerbe 37,4</td>
<td></td>
</tr>
<tr>
<td>5 = Sehr ungünstig</td>
<td>Wohnen 1,8</td>
<td>Maßnahmen zur Verbesserung der thermischen Situation sind notwendig und prioritär. Sehr hoher Bedarf an Anpassungsmaßnahmen wie zusätzlicher Begrünung (z.B. Pocket-Parks), Verschattung und Entsiegelung. Ausreichend Ausgleichsräume sollten fußläufig gut erreichbar und zugänglich sein.</td>
</tr>
<tr>
<td></td>
<td>Gewerbe 8,6</td>
<td></td>
</tr>
</tbody>
</table>

SCHLUSSFOLGERUNGEN

Die Ergebnisse zeigen, dass es in Ulm trotz des (im Vergleich zu anderen baden-württembergischen Städten) relativ kühlen Klimas (vgl. Kapitel 2.2.2) thermisch belastete Siedlungsbereiche gibt. Deren bioklimatische Situation sollte mindestens erhalten, möglichst durch geeignete Maßnahmen verbessert werden. Weite Teile des Stadtgebiets werden über die aufgezeigten Kaltluftleitbahnen bzw. kleinräumige Ausgleichsströmungen durchströmt, doch nimmt die Durchlüftung in Richtung des Stadtkerns ab und fällt in der Innenstadt nur noch gering aus bzw. ist teilweise nicht mehr gegeben. Eine ausreichende Belüftung kann nicht nur die thermische Belastung mildern, sondern sich auch positiv auf, die in diesem Gutachten nicht näher betrachtete, Luftqualität auswirken. Entsprechend sollte der Erhalt bzw. die Verbesserung der Durchlüftung durch geeignete Maßnahmen im Fokus stehen und insb. die Funktion der Kaltluftleitbahnen erhalten, d.h. auf deren Bebauung verzichtet werden.

Tabelle 9: Flächenanteile bioklimatisch bedeutender Grünareale am Tage und abgeleitete Planungshinweise

<table>
<thead>
<tr>
<th>Bedeutung der Grünflächen</th>
<th>Flächenanteil [%]</th>
<th>Allgemeine Planungshinweise</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 = Geringe</td>
<td>6,5</td>
<td>Freiflächen bzw. siedlungsfere Grünflächen mit wenig Schatten und intensiver solarer Einstrahlung (vorwiegend Rasen- bzw. landwirtschaftliche Nutzflächen). Innerhalb des Siedlungsgebiets sind verschattende Vegetationselemente zu entwickeln bzw. auszubauen (Erhöhung der Mikroklimavielfalt).</td>
</tr>
<tr>
<td>2 = Mittlere</td>
<td>40,1</td>
<td>Frei- und Grünflächen mit einem Defizit an Verschattung (geringe Ausgleichsfunktion) bzw. unzureichender Erreichbarkeit aus belasteten Siedlungsräumen (nicht als Rückzugsort geeignet). Innerhalb des Siedlungsgebiets sind verschattende Vegetationselemente zu entwickeln bzw. auszubauen (Erhöhung der Mikroklimavielfalt).</td>
</tr>
<tr>
<td>4 = Sehr hohe</td>
<td>27,6</td>
<td>Grünflächen mit einem hohen Maß an Verschattung und damit einhergehender hoher Aufenthaltsqualität, die fußläufig aus den belasteten Siedlungsgebieten erreicht werden können. Verschattende Vegetationselemente sind zu erhalten und zu schützen (ggf. Bewässerung), die gute Erreichbarkeit ist weiterhin zu gewährleisten.</td>
</tr>
</tbody>
</table>
Abb. 19: Planungshinweiskarte Nachtsituation für einen Ausschnitt des Ulmer Stadtgebiets (gesamtstädtische Darstellung im A3-Format im Anhang)
Abb. 20: Planungshinweiskarte Tagsituation für einen Ausschnitt des Ulmer Stadtgebiets (gesamtstädtische Darstellung im A3-Format im Anhang)
7 Betroffenheitsanalyse

In Abb. 21 sind die Einwohnerzahlen pro Blockfläche (visualisiert über Kreise) mit der thermischen Belastung in der Nacht kombiniert (Farbgebung von gelb bis rotbraun; vgl. Kapitel 6.2) sowie sensible Einrichtungen wie Krankenhäuser und Pflegeheime verortet. Diese Form der Darstellung verdeutlicht, dass im Stadtkern viele Menschen von einer mittleren bis ungünstigen bioklimatischen Situation betroffen sind. Mit steigender Entfernung zum Stadtkern nehmen tendenziell sowohl die Einwohnerdichte als auch die bioklimatische Belastung ab. In den zumeist stark belasteten Gewerbegebieten sind die Einwohnerzahlen sehr gering, sodass hier in der Nacht wenige Konflikte auftreten.

Die Ergebnisse beziehen sich auf die derzeitige bioklimatische Belastung in Ulm. Infolge des Klimawandels muss in Zukunft mit einem höheren Belastungsniveau gerechnet werden, auf das sich hitzesensible Bevölkerungsgruppen weniger gut einzustellen vermögen. Entsprechend ist die Umsetzung von Klimaanpassungsmaßnahmen zur stadtklimatischen Optimierung in belasteten Gebieten, die einen hohen Anteil der Hauptrisikogruppen beherbergen (oder generell hohe Einwohnerzahlen aufweisen) als noch wichtiger anzusehen – gerade vor dem Hintergrund des demographischen Wandels, der bereits innerhalb der nächsten zwanzig Jahre zu einem Anstieg von Seniorinnen und Senioren (65 und älter) um ca. 4 % führt, was in absoluten Zahlen einem Zuwachs von ca. 5.000 Personen entspricht (Betrachtungszeitraum 2015-2035; Statistisches Landesamt Baden-Württemberg (2018)).
Abb. 21: Vulnerabilitätsanalyse Nachtsituation für einen Ausschnitt des Ulmer Stadtgebiets (Farbschema zur Bewertung von Grün-, Siedlungs- und Verkehrsflächen aus der Planungshinweiskarte Nachtsituation entnommen)
Abb. 22: Vulnerabilitätsanalyse Tagsituation für einen Ausschnitt des Ulmer Stadtgebiets (Farbschema zur Bewertung von Grün- und Siedlungsflächen aus der Planungshinweiskarte Tagsituation entnommen)
8 Maßnahmenkatalog Klimaanpassung

Tabelle 10: Beispiele für Maßnahmen zur Klimaanpassung

<table>
<thead>
<tr>
<th>Verbesserung der Durchlüftung</th>
<th>Thermisches Wohlbefinden</th>
<th>Reduktion der Wärmekoppelung im Innenraum</th>
<th>Sonstige Maßnahmen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baukörperstellung und Abstandsf lächen beachten (vgl. Abb. 22)</td>
<td>Verschattung von Straßen und Gehwegen</td>
<td>Dachbegrünung</td>
<td>Schutz von offenen Wasserflächen</td>
</tr>
<tr>
<td>Rückbau</td>
<td>Begrünung und Verschattung von Parkplätzen</td>
<td>Fassadenbegrünung</td>
<td>Anpassung des Raumnutzungskonzeptes</td>
</tr>
<tr>
<td>Schutz und Vernetzung für den Kaltlufthaushalt relevanter Flächen</td>
<td>Erhöhung der Oberflächenalbedo (vgl. Abb. 23)</td>
<td>Technische Gebäude kühlung</td>
<td>Ausbau sozialer Infrastruktur und Netzwerke</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Innen-/Hinterhofbegrünung</td>
<td>(Energetische) Gebäudesanierung</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Schaffung von Pocket Parks</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Wasserflächen im öffentlichen Raum schaffen</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Erhöhung der mikroklimatischen Vielfalt</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Schutz bestehender großflächiger Parks / Grünflächen</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Schutz von Waldflächen</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Abb. 23: Flächenkulisse – Empfehlungen für die Maßnahme „Baukörperstellung und Abstandsflächen beachten“

Abb. 24: Flächenkulisse – Empfehlungen für die Maßnahme „Erhöhung der Oberflächenalbedo“

Abb. 25: Stadthaus Ulm als Beispiel für ein Gebäude mit hoher Oberflächenalbedo

Neben der Fassadenbegrünung weisen auch offene Wasserflächen eine positive Wirkung auf die thermische Situation auf. Beispiele für diese Maßnahme sind Brunnen (Abb. 29), Wasserspielplätze, künstliche Wasserfälle, Regenrückhaltebecken oder Teiche. Dies gilt insbesondere für die Tagsituation. Hier findet Verdunstung statt, die Energie aus der umgebenden Luft benötigt und diese abkühlt.

Abb. 29: Künstliche Wasserflächen: Brunnen in Ulm

Abb. 30: Mikroklimatische Vielfalt entlang der Donau
9 Zusammenfassung und Ausblick

Die aktuelle Stadtklimaanalyse für Ulm schreibt die Untersuchungen der Jahre 1997 (Grundlagenkarte Klima/Luft) bzw. 2015 (Klimaanalyse Donau-Iller) in einer deutlich höheren räumlichen Auflösung fort (vgl. Kapitel 2.3). Das verwendete 25 m x 25 m-Raster entspricht einem mesoskaligen Ansatz. Für jede Rasterzelle des ca. 465 km² großen Untersuchungsgebietes lagen repräsentative Daten zu Landnutzung, Gelände, Strukturhöhe und zum Versiegelungsgrad vor. Diese Informationen dienten als Eingangsdaten für die Klimamodellierung mit dem Modell FITNAH 3D (vgl. Kapitel 3.3).

Die Klimaanalysekarte (vgl. Kapitel 5) spiegelt die Überwärmung der Siedlungsflächen und das Kaltluftprozessgeschehen für das Untersuchungsgebiet wider. Sie veranschaulicht die strukturellen Unterschiede auf das Temperaturfeld sowie den städtischen Wärmeinseleffekt (bis zu 8,3 K höhere Temperaturen im Stadtkern verglichen mit den Grünflächen der Stadt). Außerdem bildet sie die in einer autochthonen Sommernacht entstehenden Ausgleichsströmungen ab (Flurwinde, Hangabwinde) und identifiziert fünf für die Durchströmung des Stadtgebiets besonders wichtige Kaltluftleitbahnbereiche sowie 14 Bereiche mit flächenhaftem Kaltluftabfluss.

Quellenverzeichnis

Stadt Karlsruhe (2014): Städtebaulicher Rahmenplan Klimaanpassung für die Stadt Karlsruhe (Teil II). Forschungsbericht KLIMOPASS.

Abbildung A2: Planungshinweiskarte Nachtsituation
Abbildung A3: Planungshinweiskarte Nachtsituation (Zentrum)
Abbildung A5: Planungshinweiskarte Tagsituation (Zentrum)